If it's not what You are looking for type in the equation solver your own equation and let us solve it.
x^2+19x-7=0
a = 1; b = 19; c = -7;
Δ = b2-4ac
Δ = 192-4·1·(-7)
Δ = 389
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(19)-\sqrt{389}}{2*1}=\frac{-19-\sqrt{389}}{2} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(19)+\sqrt{389}}{2*1}=\frac{-19+\sqrt{389}}{2} $
| 93=8h+45 | | 13b+3=4+b | | 0.15=y-0.45= | | 2x+4=-4x-3 | | (7x)+7=32 | | F(2)=3.5^x | | 20.4=-5.1h | | (5n)+5=45 | | 2x^2-14=-x | | v=102(3v-8) | | x-1/3=x-4/4 | | 5+1/y=1/3 | | 5+1/y=13 | | 5+1y=13 | | 25x2+10x=8 | | 20x=180+5x | | 2(x+5)-5=5x-7 | | 78+4(3-s)=18 | | x^2+3x-200=0 | | -5n+4=-6 | | 5x-2=-3+3x+7 | | (4x)-4=24 | | 10x2=40 | | 11=-3n+15 | | 5x-2=-3+7 | | A/r(2)=C | | 24-y=204 | | 7n-4n=4n+8-4n | | 3x+10=6x–80 | | 12/5x=x+35 | | -7.8+3.6=x | | 2^{2x}+2^x-2=0 |